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MCMC 1n Bayesian data analysis
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- log(likelihood) distribution is result of calculation; function of model
parameters x

Markov Chain Monte Carlo (MCMC) algorithm draws random samples
of x from posterior probability p(x|Y)

Produces plausible set of parameters {x}; therefore model realization
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MCMC - problem statement

Parameter space of n dimensions represented by vector x

Given an “arbitrary” target probability density function
(pdf), g(x), draw a set of samples {x, } from it

Only requirement typically 1s that, given x, one be able to
evaluate Cq(x), where C 1s an unknown constant, that 1s,
g(x) need not be normalized

Although focus here 1s on continuous variables, MCMC
can be applied to discrete variables as well
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Uses of MCMC

Permits evaluation of the expectation values of functions
of x, e.g.,

(S0)) = 1/1x) g(x) dx = (1K) 2 fxy)

— typical use is to calculate mean (x) and variance {(x - (X))?)

Useftul for evaluating integrals, such as the partition
function for properly normalizing the pdf

Dynamic display of sequences provides visualization of
uncertainties in model and range of model variations

Automatic marginalization; when considering any subset
of parameters of an MCMC sequence, the remaining
parameters are marginalized over (integrated out)
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Metropolis Markov Chain Monte Carlo

Generates sequence of random samples from an
arbitrary probability density function

« Metropolis algorithm: Probability(x;, x,)

X5 accepted step

— draw trial step from _
* rejected step

symmetric pdf, 1.e.,
HA X) = t(-AX)
— accept or reject trial step

— simple and generally
applicable

— relies only on calculation
of target pdf for any x

Feb. 21, 2001 SPIE Medical Image Processing Conf. 6



Metropolis algorithm

* Select initial parameter vector X,

 Iterate as follows: at iteration number k
(1) create new trial position x* = x, + Ax,
where Ax 1s randomly chosen from #(Ax)
(2) calculate ratio r = g(x*)/q(x,)
(3) accept trial position, 1.e. set x,; = x*
if » > 1 or with probability 7, if <1
otherwise stay put, x,; = X,

* Requires only computation of g(x)

* Creates Markov chain since x,,,; depends only on x;

Feb. 21, 2001 SPIE Medical Image Processing Conf.



G1ibbs algorithm

* Vary only one component
of x at a time

. Draw new value of x; from Probability(x,, x,)
conditional pdf X,

q(X;| X X5 X5 1 Xip o)

e Cycle through all <\
components r_f
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Hamiltonian method

Often called hybrid method because 1t alternates Gibbs
& Metropolis steps

Associate with each parameter x, a momentum p,

Define a Hamiltonian (sum of potential and kinetic

energy):
H=0(x)+Zp/(2m) ,

where ¢ = -log (g(x))
Objective 1s to draw samples from new pdf:

q'(x, p) o< exp(- H(x, p)) = g(x) exp(-Z p7/(2 m;))

Then set of samples {x,} represent draws from g(x);
p dependence marginalized out
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Hamiltonian algorithm

* Gibbs step: randomly sample momentum distribution

* Follow trajectory of constant / using leapfrog algorithm:

T T 0
pt+=) = p(1) =2
2 2 x|y 1y
X (t+7)=x,(t+ )+ — p,(t+—)
m, 2
pi(t+7):pi(t+g _gai
X Ix(t+7)

where 1 1s leapfrog time step

* Metropolis step: accept or reject on basis of H at
beginning and end of H trajectory
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Hamiltonian hybrid algorithm

Pi

—

k+1 ¢

k.

Typical trajectories:
red path - Gibbs sample from momentum distribution
green path - trajectory with constant A, follow by Metropolis
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Hamiltonian algorithm

G1bbs step - easy because draws are from uncorrelated
Gaussian

H trajectories followed by several leapfrog steps permit
long jumps 1n (X, p) space, with little change 1n H

— specify total time = T ; number of leapfrog steps = 7/t
Metropolis step - no rejections 1f A 1s unchanged

Adjoint differentiation efficiently provides gradient
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2D 1sotropic Gaussian distribution
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Long H trajectories - shows ellipses Randomize length of H trajectories
when 6, =c,=1, m; = m,=1 to obtain good sampling of pdf
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MCMC Efficiency

— Estimate of a quantity from its samples from a pdf g(v)

1
\7=—ka
Nk

— For N independent samples drawn from a pdf, variance in estimate:

var(v)
N

var(v) =

— For N samples from an MCMC sequence with target pdf g(v)
var(v)
nN

var(Vv) =

where 1 1s the sampling efficiency
— Thus, r' iterations needed for one statistically independent sample

— Let v = variance because aim 1s to estimate variance of target pdf
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n-D 1sotropic Gaussian distributions

« MCMC efficiency o1 T T
versus number ; \\
dimensions el Hamiltonian _
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2D nonisotropic Gaussian distribution

Parameter 2
)
| §
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Parameter 1
* Nonisotropic Gaussian target pdt: 6, =4, c,= 1, m, = m,=1
 Randomize length of H trajectories to get random sampling
* Convergence: determine whether sequence samples target pdf
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Convergence test statistic

* Variance integral
var(x,) = Kxi —)fl.)zp(x)dx

=[5~ ) Vo(0p(ds+(x, - %)’ p(v)|

by integration by parts and ¢(x) = —log(p(x))
— limits are typically oo and last term is usually O

— thus, integrals are equal

« Form ratio of integrals, computed from samples x* from p(x)

i3 OO
S (xf -5 9P
(xl xl) axk

32 (xik B fik)z

* R tends to be less than 1 when p(x) not adequately sampled
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Convergence - 2D nonisotropic Gaussians

est. var(Z)/éT;(;;ﬁm

est. var(1)/16
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Nurmber of Hamiltonian Steps

* Nonisotropic Gaussian target pdt: 6,=4, 6,= 1, m;=m,= 1
— control degree of pdf sampling by using short leapfrog steps (t = 0.2)

and 7, =2
Test statistic R < 1 when estimated variance is deficient
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16D correlated Gaussian distribution
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Parameter 1

16D Gaussian pdf related to smoothness prior based on
integral of L2 norm of second derivative

Efficiency/(function evaluation) =
2.2% (Hamiltonian algorithm)
0.11% or 1.6% (Metropolis; w/o & with covar. adapt.)
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MCMC - Issues

Identification of convergence to target pdf
— 1s sequence 1n thermodynamic equilibrium with target pdf?
— validity of estimated properties of parameters (covariance)

Burn in

— at beginning of sequence, may need to run MCMC for
awhile to achieve convergence to target pdf

Use of multiple sequences
— different starting values can help confirm convergence

— natural choice when using computers with multiple CPUs

Accuracy of estimated properties of parameters

— related to efficiency, described above

Feb. 21, 2001 SPIE Medical Image Processing Conf. 20



Conclusions

MCMC provides good tool for exploring the Bayesian
posterior and hence for drawing inferences about models
and parameters

Hamiltonian method

— based on Hamiltonian dynamics

— efficiency for 1sotropic Gaussians 1s about 7% per function
evaluation, independent of number of dimensions

— much better efficiency than Metropolis for large dimensions

— more robust to correlations among parameters than Metropolis

Convergence test based on gradient of -log(probability)

Feb. 21, 2001 SPIE Medical Image Processing Conf. 21



Bibliography

Bayesian Learning for Neural Networks, R. M. Neal, (Springer, 1996);
Hamiltonian hybrid MCMC

“Posterior sampling with improved efficiency,” K. M. Hanson and G. S.
Cunningham, Proc. SPIE 3338, 371-382 (1998); Metropolis examples; includes
introduction to MCMC

Markov Chain Monte Carlo in Practice, W. R. Gilks et al., (Chapman and Hall,
1996); excellent review; applications

“Bayesian computation and stochastic systems,” J. Besag et al., Stat. Sci. 10, 3-66
(1995); MCMC applied to image analysis

“Inversion based on complex simulations,” K. M. Hanson, Maximum Entropy and
Bayesian Methods, G. J. Erickson et al., eds., (Kluwer Academic, 1998);
describes adjoint differentiation and its usefulness for solving inversion problems

More articles and slides under http://www.lanl.gov/home/kmh/

Feb. 21, 2001 SPIE Medical Image Processing Conf. 22


http://www.lanl.gov/home/kmh/

